CoderzColumn : Tutorials Home (Page: 16)

CoderzColumn Tutorials


Learning is a lifelong process. But you must know what, where, and how to learn? What skills to develop? What skills will help you boost your career? If not, you are at the right place! Our tutorial section at CoderzColumn is dedicated to providing you with all the practical lessons. It will give you the experience to learn Python for different purposes and code on your own. Our tutorials cover:

  • Python Programming - threading, multiprocessing, concurrent.futures, asyncio, queue, imaplib, smtplib, email, mimetypes, cprofile, profile, tracemalloc, logging, ipywidgets, beautifulsoup, filecmp, glob, shutil, tarfile, zipfile, argparse, datetime, traceback, abc, contextlib, warnings, dataclasses, re, difflib, textwrap, collections, heapq, bisect, weakref, configparser, signa, ipaddress, xarray, pandas, subprocess, sched, etc.
  • Artificial Intelligence - PyTorch, Keras, Tensorflow, JAX, MXNet, Torchvision, Torchtext, GluonCV, GluonNLP, etc
  • Machine Learning - Scikit-Learn, Statsmodels, XGBoost, CatBoost, LightGBM, optuna, scikit-optimize, hyperopt, bayes_opt, scikit-plot, lime, shap, eli5, etc.
  • Data Science - missingno, seaborn, pandas, sweetviz, numpy, networkx, xarray, awkward-array, etc.
  • Data Visualization - Matplotlib, Bokeh, Bqplot, Plotnine, Altair, Plotly, Cufflinks, Holoviews, dash, streamlit, panel, voila, bokeh, geopandas, geoviews, folium, ipyleaflet, geoplot, cartopy, etc.
  • Digital Marketing - SEO tactics, marketing strategies, Social Media marketing, and more.

For an in-depth understanding of the above concepts, check out the sections below.

Recent Tutorials


Tags beautifulsoup, modify-html-doc
Beautifulsoup: Guide To Modify HTML
Python

Beautifulsoup: Guide To Modify HTML

This tutorial primarily concentrates on how we can modify the contents of the parsed HTML document by BeautifulSoup. We have explained various modifications like rename tag, Add new tag, modify/add attributes, wrap tag inside of another tag, etc.

Sunny Solanki  Sunny Solanki
Tags sonnet, tensorflow, deepmind
Sonnet: Guide to Create Simple Neural Networks
Artificial Intelligence

Sonnet: Guide to Create Simple Neural Networks

Sonnet is a deep learning framework developed on the top of Tensorflow by deepmind. It let us design deep neural networks using its easy-to-use API.

Sunny Solanki  Sunny Solanki
Tags numba, stencil-kernel
Numba @stencil Decorator: Guide to Improve Performance of Code involving Stencil Kernels
Python

Numba @stencil Decorator: Guide to Improve Performance of Code involving Stencil Kernels

The tutorial covers how to design stencil kernel functions using Numba @stencil decorator. Stencil kernels are functions where each element of the input array is updated according to a specified pattern.

Sunny Solanki  Sunny Solanki
Tags numba, guvectorize-decorator
Numba @guvectorize Decorator: Generalized Universal Functions
Python

Numba @guvectorize Decorator: Generalized Universal Functions

Numba @guvectorize decorator let us create ufuncs (Universal Functions) which works on arrays of different shapes and returns result which can be of different shape than input. It's designed to speed up operations on arrays of differing shapes.

Sunny Solanki  Sunny Solanki
Tags haiku, multi-layer-perceptrons
Haiku: Guide to Create Multi-Layer Perceptrons using JAX
Artificial Intelligence

Haiku: Guide to Create Multi-Layer Perceptrons using JAX

Tutorial guides individual on how to use Haiku to create simple neural networks. Haiku is built on top of JAX and is created to make life of ML developer easier.

Sunny Solanki  Sunny Solanki
Tags dashboard, streamlit, cufflinks, plotly
How to Create Basic Dashboard using Streamlit and Cufflinks (Plotly)?
Data Science

How to Create Basic Dashboard using Streamlit and Cufflinks (Plotly)?

How to Create Basic Dashboard using Streamlit and Cufflinks (Plotly)?

Sunny Solanki  Sunny Solanki
Tags pivot-tables, pandas-dataframe
Guide to Create Pivot Tables from Pandas DataFrame
Data Science

Guide to Create Pivot Tables from Pandas DataFrame

Tutorial provides detailed guide on how we can use pivot() and pivot_table() function available from pandas to create pivot tables. The pivot_table() function also let us perform many simple stats on aggregate data.

Sunny Solanki  Sunny Solanki
Tags jax, stax, optimizers
Guide to Create Neural Networks using High-level JAX API
Artificial Intelligence

Guide to Create Neural Networks using High-level JAX API

Tutorial covers in details how we can use high-level API of JAX library available through 'stax', 'nn' and 'optimizers' modules to create Neural Networks.

Sunny Solanki  Sunny Solanki
Tags pandas-dataframe, multiindex, hierarchical-index
Simple Guide to Understand Pandas Multi-Level / Hierarchical Index
Python

Simple Guide to Understand Pandas Multi-Level / Hierarchical Index

Tutorial covers detailed guide on how to create and work with Multi-level as well as hierachical index for Pandas Dataframe. It also covers various ways to index dataframe which has multi-level indexing for rows ad columns.

Sunny Solanki  Sunny Solanki
Tags python, optimisation
numba - Make Your Python Functions Run Faster Like C/C++
Python

numba - Make Your Python Functions Run Faster Like C/C++

Tutorial provides detailed guide to use Numba @jit decorator. It explains various ways to use @jit decorator and all the possible parameters of it to speed up Python code.

Sunny Solanki  Sunny Solanki
Parallel Computing using Python

Parallel Computing using Python


Parallel Computing is a type of computation where tasks are assigned to individual processes for completion. These processes can be running on a single computer or cluster of computers. Parallel Computing makes multi-tasking super fast.

Python provides different libraries (joblib, dask, ipyparallel, etc) for performing parallel computing.

Concurrent Programming in Python

Concurrent Programming in Python


Concurrent computing is a type of computing where multiple tasks are executed concurrently. Concurrent programming is a type of programming where we divide a big task into small tasks and execute these tasks in parallel. These tasks can be executed in parallel using threads or processes.

Python provides various libraries (threading, multiprocessing, concurrent.futures, asyncio, etc) to create concurrent code.

Visualize Machine Learning Metrics

Visualize Machine Learning Metrics


Once our Machine Learning model is trained, we need some way to evaluate its performance. We need to know whether our model has generalized or not.

For this, various metrics (confusion matrix, ROC AUC curve, precision-recall curve, silhouette Analysis, elbow method, etc) are designed over time. These metrics help us understand the performance of our models trained on various tasks like classification, regression, clustering, etc.

Python has various libraries (scikit-learn, scikit-plot, yellowbrick, interpret-ml, interpret-text, etc) to calculate and visualize these metrics.

Interpret Predictions Of ML Models

Interpret Predictions Of ML Models


After training ML Model, we generally evaluate the performance of model by calculating and visualizing various ML Metrics (confusion matrix, ROC AUC curve, precision-recall curve, silhouette Analysis, elbow method, etc).

These metrics are normally a good starting point. But in many situations, they don’t give a 100% picture of model performance. E.g., A simple cat vs dog image classifier can be using background pixels to classify images instead of actual object (cat or dog) pixels.

In these situations, our ML metrics will give good results. But we should always be a little skeptical of model performance.

We can dive further deep and try to understand how our model is performing on an individual example by interpreting results. Various algorithms have been developed over time to interpret predictions of ML models and many Python libraries (lime, eli5, treeinterpreter, shap, etc) provide their implementation.

Python Data Visualization Libraries

Python Data Visualization Libraries


Data Visualization is a field of graphical representation of information / data. It is one of the most efficient ways of communicating information with users as humans are quite good at capturing patterns in data.

Python has a bunch of libraries that can help us create data visualizations. Some of these libraries (matplotlib, seaborn, plotnine, etc) generate static charts whereas others (bokeh, plotly, bqplot, altair, holoviews, cufflinks, hvplot, etc) generate interactive charts. Majority of basic visualizations like bar charts, line charts, scatter plots, histograms, box plots, pie charts, etc are supported by all libraries. Many libraries also support advanced visualization, widgets, and dashboards.

Advanced Data Visualizations using Python

Advanced Data Visualizations using Python


Basic Data Visualizations like bar charts, line charts, scatter plots, histograms, box plots, pie charts, etc are quite good at representing information and exploring relationships between data variables.

But sometimes these visualizations are not enough and we need to analyze data from different perspectives. For this purpose, many advanced visualizations are developed over time like Sankey diagrams, candlestick charts, network charts, chord diagrams, sunburst charts, radar charts, parallel coordinates charts, etc. Python has many data visualization libraries that let us create such advanced data visualizations.

Python Deep Learning Libraries

Python Deep Learning Libraries


Deep learning is a field in Machine Learning that uses deep neural networks to solve tasks. The neural networks with generally more than one hidden layer are referred to as deep neural networks.

Many real-world tasks like object detection, image classification, image segmentation, etc can not be solved with simple machine learning models (decision trees, random forest, logistic regression, etc). Research has shown that neural networks with many layers are quite good at solving these kinds of tasks involving unstructured data (Image, text, audio, video, etc). Deep neural networks nowadays can have different kinds of layers like convolution, recurrent, etc apart from dense layers.

Python has many famous deep learning libraries (PyTorch, Keras, JAX, Flax, MXNet, Tensorflow, Sonnet, Haiku, PyTorch Lightning, Scikeras, Skorch, etc) that let us create deep neural networks to solve complicated tasks.

Image Classification

Image Classification


Image classification is a sub-field under computer vision and image processing that identifies an object present in an image and assigns a label to an image based on it. Image classification generally works on an image with a single object present in it.

Over the years, many deep neural networks (VGG, ResNet, AlexNet, MobileNet, etc) were developed that solved image classification task with quite a high accuracy. Due to the high accuracy of these algorithms, many Python deep learning libraries started providing these neural networks. We can simply load these networks with weights and make predictions using them.

Python libraries PyTorch and MXNet have helper modules named 'torchvision' and 'gluoncv’ respectively that provide an implementation of image classification networks.