CoderzColumn : Data Science Tutorials (Page: 1)

Data Science Tutorials


Data science is an interdisciplinary field that applies information from data across a wide range of application fields by using scientific methods, procedures, algorithms, and systems to infer knowledge and insights from noisy, structured, and unstructured data.

Data visualization libraries like matplotlib, Bokeh, bqplot, Plotnine, cufflinks, Altair, hvplot, Holoviews, seaborn and more.

Different Interactive charts Sunburst Charts, Sankey Diagrams (Alluvial), Candlestick Charts, Network Charts, Chord Diagram, Parallel Coordinates Plots, Radar Charts, Connection Map, Treemap, Choropleth Maps, Scatter & Bubble Maps.

Apart from this, you will find tutorials about time series data and its applications, creating dashboards, and other concepts.

For an in-depth understanding of the above concepts, check out the sections below.

Recent Data Science Tutorials


Tags streaming-data, bokeh
Bokeh: Guide to Work with Realtime Streaming Data
Data Science

Bokeh: Guide to Work with Realtime Streaming Data

This article is your comprehensive guide to working with realtime streaming data using Bokeh. Learn how to visualize and analyze your streaming data in real-time with Bokeh's powerful features and tools. Whether you're a beginner or a seasoned data scientist, this article will provide you with the knowledge and skills you need to effectively work with streaming data using Bokeh.

Sunny Solanki  Sunny Solanki
Tags dashboard, panel
Simple Dashboard using Panel (w/ Widgets)
Data Science

Simple Dashboard using Panel (w/ Widgets)

Learn how to create a Simple Dashboard using Panel with Widgets in this comprehensive tutorial. With easy-to-follow steps, you'll be able to design and customize your dashboard to fit your specific needs. Increase your productivity and organization with this powerful data visualization tool.

Sunny Solanki  Sunny Solanki
Tags dashboard, streamlit
Create Dashboard Faster using Streamlit
Data Science

Create Dashboard Faster using Streamlit

Streamline your dashboard creation process with Streamlit, a Python library that allows you to build interactive dashboards with minimal coding. This article will show you how to create a dashboard with fewer than 50 lines of code, saving you time and effort in the development process. Learn how to use Streamlit's intuitive syntax and pre-built components to create a functional dashboard in no time.

Sunny Solanki  Sunny Solanki
Tags sales-funnel-chart, funnel-chart, matplotlib
Sales Funnel Charts using Matplotlib
Data Science

Sales Funnel Charts using Matplotlib

Learn how to create visually appealing sales funnel charts using Matplotlib, a popular data visualization library in Python. This step-by-step guide will show you how to use Matplotlib to visualize your sales data and make data-driven decisions for your business.

Sunny Solanki  Sunny Solanki
Tags population-pyramid, matplotlib
Population Pyramid Chart using Matplotlib
Data Science

Population Pyramid Chart using Matplotlib

Discover how to create population pyramid charts using Matplotlib, a powerful data visualization library in Python. This tutorial will guide you through the process of building a population pyramid chart, a commonly used visualization for analyzing demographic data. With customizable styles and features, you can create a professional-looking chart that effectively communicates population trends and distribution. Enhance your data visualization skills and create insightful population pyramid charts with this step-by-step guide using Matplotlib.

Sunny Solanki  Sunny Solanki
Tags timeline, matplotlib
Timeline using Matplotlib
Data Science

Timeline using Matplotlib

Learn how to create professional-looking timelines using Matplotlib, a popular data visualization library in Python. This tutorial will walk you through the step-by-step process of building a timeline chart with customizable styles and features, perfect for presenting historical events, project plans, or schedules. Improve your data visualization skills and impress your audience with this easy-to-follow guide on creating timelines with Matplotlib.

Sunny Solanki  Sunny Solanki
Tags venn-diagram, matplotlib
Venn Diagram using Matplotlib
Data Science

Venn Diagram using Matplotlib

A simple guide on how to create a Venn diagram using Python data visualization library Matplotlib. We explain how to create a data science Venn diagram using Matplotlib.

Sunny Solanki  Sunny Solanki
Tags watermarks, matplotlib
How to Add Watermarks to Matplotlib Charts?
Data Science

How to Add Watermarks to Matplotlib Charts?

A simple guide on how to watermark matplotlib charts. The tutorial explains how to add image and text watermarks to the matplotlib chart with simple examples.

Sunny Solanki  Sunny Solanki
Tags hexbin-charts, matplotlib
Hexbin Charts using Matplotlib
Data Science

Hexbin Charts using Matplotlib

Discover how to create Hexbin Charts using Matplotlib, a popular Python library for data visualization. This tutorial will guide you through the process of creating stunning visualizations that allow you to explore and analyze your data in a new and exciting way.

Sunny Solanki  Sunny Solanki
Tags gauge-chart, matplotlib
Gauge Chart using Matplotlib | Python
Data Science

Gauge Chart using Matplotlib | Python

Learn how to create visually appealing Gauge Charts using the powerful Python data visualization library, Matplotlib. Follow this step-by-step tutorial and add an extra layer of insight to your data.

Sunny Solanki  Sunny Solanki
Python Data Visualization Libraries

Python Data Visualization Libraries


Data Visualization is a field of graphical representation of information / data. It is one of the most efficient ways of communicating information with users as humans are quite good at capturing patterns in data.

Python has a bunch of libraries that can help us create data visualizations. Some of these libraries (matplotlib, seaborn, plotnine, etc) generate static charts whereas others (bokeh, plotly, bqplot, altair, holoviews, cufflinks, hvplot, etc) generate interactive charts. Majority of basic visualizations like bar charts, line charts, scatter plots, histograms, box plots, pie charts, etc are supported by all libraries. Many libraries also support advanced visualization, widgets, and dashboards.

Advanced Data Visualizations using Python

Advanced Data Visualizations using Python


Basic Data Visualizations like bar charts, line charts, scatter plots, histograms, box plots, pie charts, etc are quite good at representing information and exploring relationships between data variables.

But sometimes these visualizations are not enough and we need to analyze data from different perspectives. For this purpose, many advanced visualizations are developed over time like Sankey diagrams, candlestick charts, network charts, chord diagrams, sunburst charts, radar charts, parallel coordinates charts, etc. Python has many data visualization libraries that let us create such advanced data visualizations.

Dashboards using Python

Dashboards using Python


Dashboards are literally everywhere and everyone is using them. Dashboards are GUI with various visualizations and metrics that can be used to monitor key performance indicators. Dashboards have a very wide range of applications in all fields.

Python has a bunch of libraries (dash, panel, streamlit, bokeh, etc) that let us create dashboards using them. They let us include widgets and interactive data visualizations in dashboards.

Work with Time Series Data in Python

Work with Time Series Data in Python


Time series is a type of data where data points are recorded in time order or at specified time intervals. Many real-world datasets like stock prices, weather indicators, heights of ocean tides, retail sales, etc.

Time series analysis involves various tasks like resampling time series, trying moving window functions, forecasting, classification, etc.

Python has various libraries (pandas, statsmodels, etc.) that let us load and work with time series data efficiently. They even provide useful functionalities to work with time series data.

Visualize Maps using Python

Visualize Maps using Python


Maps are one of the best ways to display and analyze geospatial data. It helps us better see patterns and trends geographically. This can help us with better decision-making.

Many different types of maps have been developed over time to analyze data from different perspectives. Some common map visualization types are choropleth maps, scatter maps, bubble maps, connection maps, etc. Apart from these, we can also include pins on maps to identify locations.

Python has many different libraries (geopandas, folium, ipyleaflet, cartopy, geoviews, geoplot, bokeh, altair, plotly, hvplot, etc) that let us create static as well as interactive maps.

Exploratory Data Analysis using Python

Exploratory Data Analysis using Python


Exploratory data analysis (commonly referred to as EDA) is an initial analysis of data to look for various relationships, anomalies, missing values, distributions, basic statistics, etc. It helps us understand data better to make further decisions. Various stats are calculated and statistical visualizations are created during EDA to understand data.

Python provides many different tools / libraries (Sweetviz, missingno, seaborn, pandas, etc) for performing EDA. It's quite common to use more than one of these tools to perform EDA.