Updated On : Dec-01,2019 Time Investment : ~25 mins
!pip install phe
import phe
from phe import paillier
import numpy as np
import random
from numba import jit
import sympy
import math
Collecting phe
  Downloading https://files.pythonhosted.org/packages/32/0e/568e97b014eb14e794a1258a341361e9da351dc6240c63b89e1541e3341c/phe-1.4.0.tar.gz
Building wheels for collected packages: phe
  Running setup.py bdist_wheel for phe ... - done
  Stored in directory: /tmp/.cache/pip/wheels/f8/dc/36/dcb6bf0f1b9907e7b710ace63e64d08e7022340909315fdea4
Successfully built phe
Installing collected packages: phe
Successfully installed phe-1.4.0
You are using pip version 18.1, however version 19.0.3 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
class ThresholdPaillier(object):
    def __init__(self,size_of_n):
        #size_of_n = 1024
        pub, priv = paillier.generate_paillier_keypair(n_length=size_of_n)
        self.p1 = priv.p
        self.q1 = priv.q

        while sympy.primetest.isprime(2*self.p1 +1)!= True:
            pub, priv = paillier.generate_paillier_keypair(n_length=size_of_n)
            self.p1 = priv.p
        while sympy.primetest.isprime(2*self.q1 +1)!= True:
            pub, priv = paillier.generate_paillier_keypair(n_length=size_of_n)
            self.q1 = priv.q

        self.p = (2*self.p1) + 1
        self.q = (2*self.q1) + 1
        print(sympy.primetest.isprime(self.p),sympy.primetest.isprime(self.q),sympy.primetest.isprime(self.p1),sympy.primetest.isprime(self.q1))
        self.n = self.p * self.q
        self.s = 1
        self.ns = pow(self.n, self.s)
        self.nSPlusOne = pow(self.n,self.s+1)
        self.nPlusOne = self.n + 1
        self.nSquare = self.n*self.n

        self.m = self.p1 * self.q1
        self.nm = self.n*self.m
        self.l = 5 # Number of shares of private key
        self.w = 2 # The minimum of decryption servers needed to make a correct decryption.
        self.delta = self.factorial(self.l)
        self.rnd = random.randint(1,1e50)
        self.combineSharesConstant = sympy.mod_inverse((4*self.delta*self.delta)%self.n, self.n)
        self.d = self.m * sympy.mod_inverse(self.m, self.n)

        self.ais = [self.d]
        for i in range(1, self.w):
            self.ais.append(random.randint(0,self.nm-1))

        self.r = random.randint(1,self. p) ## Need to change upper limit from p to one in paper
        while math.gcd(self.r,self.n) != 1:
            self.r = random.randint(0, self.p)
        self.v = (self.r*self.r) % self.nSquare

        self.si = [0] * self.l
        self.viarray = [0] * self.l

        for i in range(self.l):
            self.si[i] = 0
            X = i + 1
            for j in range(self.w):
                self.si[i] += self.ais[j] * pow(X, j)
            self.si[i] = self.si[i] % self.nm
            self.viarray[i] = pow(self.v, self.si[i] * self.delta, self.nSquare)

        self.priv_keys = []
        for i in range(self.l):
            self.priv_keys.append(ThresholdPaillierPrivateKey(self.n, self.l, self.combineSharesConstant, self.w, \
                                            self.v, self.viarray, self.si[i], i+1, self.r, self.delta, self.nSPlusOne))
        self.pub_key = ThresholdPaillierPublicKey(self.n, self.nSPlusOne, self.r, self.ns, self.w,\
                                                 self.delta, self.combineSharesConstant)

    def factorial(self, n):
        fact = 1
        for i in range(1,n+1):
            fact *= i
        return fact

    def computeGCD(self, x, y):
       while(y):
           x, y = y, x % y
       return x

class PartialShare(object):
    def __init__(self, share, server_id):
        self.share = share
        self.server_id =server_id

class ThresholdPaillierPrivateKey(object):
    def __init__(self,n, l,combineSharesConstant, w, v, viarray, si, server_id, r, delta, nSPlusOne):
        self.n = n
        self.l = l
        self.combineSharesConstant = combineSharesConstant
        self.w = w
        self.v = v
        self.viarray = viarray
        self.si = si
        self.server_id = server_id
        self.r = r
        self.delta = delta
        self.nSPlusOne = nSPlusOne

    def partialDecrypt(self, c):
        return PartialShare(pow(c.c, self.si*2*self.delta, self.nSPlusOne), self.server_id)

class ThresholdPaillierPublicKey(object):
    def __init__(self,n, nSPlusOne, r, ns, w, delta, combineSharesConstant):
        self.n = n
        self.nSPlusOne = nSPlusOne
        self.r = r
        self.ns =ns
        self.w = w
        self.delta = delta
        self.combineSharesConstant = combineSharesConstant

    def encrypt(self, msg):
        msg = msg % self.nSPlusOne if msg < 0 else msg
        c = (pow(self.n+1, msg, self.nSPlusOne) * pow(self.r, self.ns, self.nSPlusOne)) % self.nSPlusOne
        return EncryptedNumber(c, self.nSPlusOne, self.n)

class EncryptedNumber(object):
    def __init__(self, c, nSPlusOne, n):
        self.c = c
        self.nSPlusOne = nSPlusOne
        self.n = n

    def __mul__(self, cons):
        if cons < 0:
            return EncryptedNumber(pow(sympy.mod_inverse(self.c, self.nSPlusOne), -cons, self.nSPlusOne), self.nSPlusOne, self.n)
        else:
            return EncryptedNumber(pow(self.c, cons, self.nSPlusOne), self.nSPlusOne, self.n)

    def __add__(self, c2):
        return EncryptedNumber((self.c * c2.c) % self.nSPlusOne, self.nSPlusOne, self.n)

def combineShares(shrs, w, delta, combineSharesConstant, nSPlusOne, n, ns):
        cprime = 1
        for i in range(w):
            ld = delta
            for iprime in range(w):
                if i != iprime:
                    if shrs[i].server_id != shrs[iprime].server_id:
                        ld = (ld * -shrs[iprime].server_id) // (shrs[i].server_id - shrs[iprime].server_id)
            #print(ld)
            shr = sympy.mod_inverse(shrs[i].share, nSPlusOne) if ld < 0 else shrs[i].share
            ld = -1*ld if ld <1 else ld
            temp = pow(shr, 2 * ld, nSPlusOne)
            cprime = (cprime * temp) % nSPlusOne
        L = (cprime - 1) // n
        result = (L * combineSharesConstant) % n
        return result - ns if result > (ns // 2) else result
tp = ThresholdPaillier(1024)
True True True True
priv_keys = tp.priv_keys
pub_key = tp.pub_key
c = pub_key.encrypt(123456789123456789123456789123456789123456789)

share1 = priv_keys[0].partialDecrypt(c)
share2 = priv_keys[1].partialDecrypt(c)
print(combineShares([share1, share2], pub_key.w, pub_key.delta, pub_key.combineSharesConstant, pub_key.nSPlusOne, pub_key.n, pub_key.ns))

share1 = priv_keys[0].partialDecrypt(c)
share2 = priv_keys[3].partialDecrypt(c)
print(combineShares([share1, share2], pub_key.w, pub_key.delta, pub_key.combineSharesConstant, pub_key.nSPlusOne, pub_key.n, pub_key.ns))

share1 = priv_keys[2].partialDecrypt(c)
share2 = priv_keys[3].partialDecrypt(c)
print(combineShares([share1, share2], pub_key.w, pub_key.delta, pub_key.combineSharesConstant, pub_key.nSPlusOne, pub_key.n, pub_key.ns))

c2 = pub_key.encrypt(-102)
share1 = priv_keys[2].partialDecrypt(c2)
share2 = priv_keys[3].partialDecrypt(c2)
print(combineShares([share1, share2], pub_key.w, pub_key.delta, pub_key.combineSharesConstant, pub_key.nSPlusOne, pub_key.n, pub_key.ns))

c1 = pub_key.encrypt(10)
c2 = c1 * -4
share1 = priv_keys[2].partialDecrypt(c2)
share2 = priv_keys[3].partialDecrypt(c2)
print('10 x -4 = %d' %combineShares([share1, share2], pub_key.w, pub_key.delta, pub_key.combineSharesConstant, pub_key.nSPlusOne, pub_key.n, pub_key.ns))

c1 = pub_key.encrypt(-4)
c2 = c1 * 30
share1 = priv_keys[2].partialDecrypt(c2)
share2 = priv_keys[3].partialDecrypt(c2)
print('-4 x 30 = %d'%combineShares([share1, share2], pub_key.w, pub_key.delta, pub_key.combineSharesConstant, pub_key.nSPlusOne, pub_key.n, pub_key.ns))

c1 = pub_key.encrypt(-10)
c2 = c1 * -7
share1 = priv_keys[2].partialDecrypt(c2)
share2 = priv_keys[3].partialDecrypt(c2)
print('-10 x -7 = %d'%combineShares([share1, share2], pub_key.w, pub_key.delta, pub_key.combineSharesConstant, pub_key.nSPlusOne, pub_key.n, pub_key.ns))

c1 = pub_key.encrypt(10)
c2 = c1 * 4
share1 = priv_keys[2].partialDecrypt(c2)
share2 = priv_keys[3].partialDecrypt(c2)
print('10 x 4 = %d'%combineShares([share1, share2], pub_key.w, pub_key.delta, pub_key.combineSharesConstant, pub_key.nSPlusOne, pub_key.n, pub_key.ns))

c1 = pub_key.encrypt(-10)
c2 = pub_key.encrypt(102)
c3 = c1 + c2
share1 = priv_keys[2].partialDecrypt(c3)
share2 = priv_keys[3].partialDecrypt(c3)
print('-10 + 102 = %d'%combineShares([share1, share2], pub_key.w, pub_key.delta, pub_key.combineSharesConstant, pub_key.nSPlusOne, pub_key.n, pub_key.ns))

c1 = pub_key.encrypt(-10)
c2 = pub_key.encrypt(-72)
c3 = c1 + c2
share1 = priv_keys[2].partialDecrypt(c3)
share2 = priv_keys[3].partialDecrypt(c3)
print('-10 + -72 = %d'%combineShares([share1, share2], pub_key.w, pub_key.delta, pub_key.combineSharesConstant, pub_key.nSPlusOne, pub_key.n, pub_key.ns))

c1 = pub_key.encrypt(10)
c2 = pub_key.encrypt(-67)
c3 = c1 + c2
share1 = priv_keys[2].partialDecrypt(c3)
share2 = priv_keys[3].partialDecrypt(c3)
print('10 + -67 = %d'%combineShares([share1, share2], pub_key.w, pub_key.delta, pub_key.combineSharesConstant, pub_key.nSPlusOne, pub_key.n, pub_key.ns))

c1 = pub_key.encrypt(10)
c2 = pub_key.encrypt(2)
c3 = c1 + c2
share1 = priv_keys[2].partialDecrypt(c3)
share2 = priv_keys[3].partialDecrypt(c3)
print('10 + 2 = %d'%combineShares([share1, share2], pub_key.w, pub_key.delta, pub_key.combineSharesConstant, pub_key.nSPlusOne, pub_key.n, pub_key.ns))
123456789123456789123456789123456789123456789
123456789123456789123456789123456789123456789
123456789123456789123456789123456789123456789
-102
10 x -4 = -40
-4 x 30 = -120
-10 x -7 = 70
10 x 4 = 40
-10 + 102 = 92
-10 + -72 = -82
10 + -67 = -57
10 + 2 = 12
Sunny Solanki  Sunny Solanki

YouTube Subscribe Comfortable Learning through Video Tutorials?

If you are more comfortable learning through video tutorials then we would recommend that you subscribe to our YouTube channel.

Need Help Stuck Somewhere? Need Help with Coding? Have Doubts About the Topic/Code?

When going through coding examples, it's quite common to have doubts and errors.

If you have doubts about some code examples or are stuck somewhere when trying our code, send us an email at coderzcolumn07@gmail.com. We'll help you or point you in the direction where you can find a solution to your problem.

You can even send us a mail if you are trying something new and need guidance regarding coding. We'll try to respond as soon as possible.

Share Views Want to Share Your Views? Have Any Suggestions?

If you want to

  • provide some suggestions on topic
  • share your views
  • include some details in tutorial
  • suggest some new topics on which we should create tutorials/blogs
Please feel free to contact us at coderzcolumn07@gmail.com. We appreciate and value your feedbacks. You can also support us with a small contribution by clicking DONATE.


Subscribe to Our YouTube Channel

YouTube SubScribe

Newsletter Subscription