Updated On : Nov-27,2019 Tags random-numbers, distributions
random - Generate Random Numbers in Python

Overview

Python random module provided implementations of generating pseudo-random numbers for various distribution.

It provides functions to generate below distributions:

  • Uniform
  • Normal (Gaussian)
  • lognormal
  • negative exponential
  • gamma
  • beta

Python's Pseudo-Random Numbers Generator (PRNG) is based on Mersenne Twister. It's a deterministic generator and hence not suitable for all situations. For cryptography purposes, please use secrets module.

In [1]:
import random
import matplotlib.pyplot as plt
%matplotlib inline
random.random() ## random() generates random floating number in range [0,1.0)
Out[1]:
0.78580578011011

Basic functions to work with random numbers:

  • randint(a,b) - Generates random integer in range a <= integer<=b
  • randrandge(stop), randrange(start,stop [,step]) - generates range of random numbers in range start and stop with steps.
  • choice(sequence) - Select one number randomly from sequence.
  • choices(population, weights=None,cum_weights=None, k=1) - Selects list of k random numbers with replacement means that it can return repeated numbers. weights and cum_weights can be used to select random numbers based on priority. Either weight or cum_weights should be supplied. Length of weights or cum_weights should be asem as population list.
  • shuffle(x[, random]) - Shuffle random numbers in place. Can not use it with immutable sequence. Use sample() function for shuffling immutable sequence.
  • sample(population, k) - Randomly sample k items from population.
  • getrandbits(k) - Generates integer with random k bits. Can be used to generate random numbers with bits limitation.
In [2]:
print(random.randint(1,10))
print(random.randrange(10))
print(random.randrange(1, 10))
print(random.randrange(1,10, 2))
print(random.choice(range(10)))
print(random.choices(range(20), k=5))
x = list(range(5,55,5))
print('Before shuffling x : '+str(x))
random.shuffle(x)
print('After shuffling x : '+str(x))
x1 = random.sample(x, 5)
print(x1)
## Below will output numbers more from begining because weights are set to [9,8,7,6,5,4,3,2,1,0] if you run choices more than one.
print(random.choices(range(10), weights = reversed(range(10)), k = 2))
print(random.getrandbits(10))
8
3
7
3
4
[11, 0, 2, 11, 10]
Before shuffling x : [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]
After shuffling x : [10, 15, 45, 35, 50, 5, 40, 25, 20, 30]
[45, 35, 20, 15, 10]
[3, 4]
848

Below is a list of functions that can be used to generate the same results using random numbers. It can help different users to reproduce the same results in research.

  • seed(a=None, version=2) - This function initializes random number generator with seed so that it produces the same result which can be used for reproducing results.
    • If a is not provided then current system time is used.
    • a can be any integer.
    • version has 2 values (1 & 2). With version 2 , str, byte & bytearray gets converted to integer.
  • getstate() - Returns object which captures current state of generator
  • setstate(state) - Sets state of generator for reproducibility.
In [3]:
randoms_with_seed = []
## Below list will all numbers same because we are setting same seed everytime before generating random number.
for i in range(10):
    random.seed(123)
    randoms_with_seed.append(random.random())

print(randoms_with_seed)
print(random.random())
print()
print('Saving state and generating random numbers : ')
state = random.getstate() ## Getting state and saving it in random variable
print(random.random()) ## Generating random number
print(random.sample(range(10), k=3)) ## Selecting 3 random numbers form range(10)
print()
print('Generating random numbers again after setting previously saved state : ')
random.setstate(state) ## Setting state again
print(random.random()) ## Generating random number after setting previously saved state. It gives same random number as previous
print(random.sample(range(10), k=3)) ## Selecting 3 random numbers from range(10) after setting previously saved state. It gives same random numbers as previous
[0.052363598850944326, 0.052363598850944326, 0.052363598850944326, 0.052363598850944326, 0.052363598850944326, 0.052363598850944326, 0.052363598850944326, 0.052363598850944326, 0.052363598850944326, 0.052363598850944326]
0.08718667752263232

Saving state and generating random numbers :
0.4072417636703983
[1, 0, 6]

Generating random numbers again after setting previously saved state :
0.4072417636703983
[1, 0, 6]

Various Distributions:

  • uniform(a,b) - Returns floating point number N in range a <= N <= b
In [4]:
random.uniform(5,10)
Out[4]:
7.681010200169634
  • triangular(low, high, mode) - Returns random number between low and high with mode mode
In [5]:
random.triangular(5,10,3)
Out[5]:
5.165428607191616
  • betavariate(alpha, beta) - Beta distribution
In [6]:
random.betavariate(5,10)
Out[6]:
0.2974248166980243
  • expovariate(lambd) - Exponential Distribution.
In [7]:
random.expovariate(0.1)
Out[7]:
9.103073294022408
  • gammavariate(alpha,beta) - Gamma distribution
In [8]:
random.gammavariate(5,10)
Out[8]:
21.097672235666323
  • gauss(mu, sigma) - Gaussian distribution
In [9]:
random.gauss(2,3)
Out[9]:
-4.174579686127806
  • lognormalvariate(mu,sigma) - Log normal distribution
In [10]:
random.lognormvariate(2,4)
Out[10]:
5506.711742345207
  • normalvariate(mu,sigma) - Normal distribution
In [11]:
random.normalvariate(2,5)
Out[11]:
-10.413396735122875
  • vonmisesvariate(mu, kappa) -
In [12]:
random.vonmisesvariate(2,10)
Out[12]:
2.4408789925446333
  • paretovariate(alpha)
In [13]:
random.paretovariate(2)
Out[13]:
1.2084763354003478
  • weibullvariate(alpha,beta)
In [14]:
random.weibullvariate(2,10)
Out[14]:
1.8689912243565223

SystemRandom - It's used to generate a random numbers using an underlying operating system. It uses os.urandom() behind the scene.

In [15]:
rand = random.SystemRandom(123)
rand
Out[15]:
<random.SystemRandom at 0x5573bb0f8178>
In [16]:
rand.random()
Out[16]:
0.062253476957529696

  Support Us to Make a Difference

Thank You for visiting our website. If you like our work, please support us so that we can keep on creating new tutorials/blogs on interesting topics (like AI, ML, Data Science, Python, Digital Marketing, SEO, etc.) that can help people learn new things faster. You can support us by clicking on the Coffee button at the bottom right corner. We would appreciate even if you can give a thumbs-up to our article in the comments section below.

 Want to Share Your Views? Have Any Suggestions?

If you want to

  • provide some suggestions on topic
  • share your views
  • include some details in tutorial
  • suggest some new topics on which we should create tutorials/blogs
Please feel free to let us know in the comments section below (Guest Comments are allowed). We appreciate and value your feedbacks.



Sunny Solanki  Sunny Solanki