Updated On : Jul-16,2020  numpy, basics

Learning Numpy - Simple Tutorial For Beginners - NumPy - Arithmetic Operations Part 15¶

Input arrays for performing arithmetic operations such as add(), subtract(), multiply(), and divide() must be either of the same shape or should conform to array broadcasting rules.

Understand The Example Step By Step¶

In [1]:
```import numpy as np
a = np.arange(9, dtype = np.float_).reshape(3,3)
```
In [3]:
```print ('First array:')
print (a)
print ('\n')
```
```First array:
[[0. 1. 2.]
[3. 4. 5.]
[6. 7. 8.]]

```
In [4]:
```print ('Second array:')
b = np.array([10,10,10])
print (b)
print ('\n')
```
```Second array:
[10 10 10]

```
In [6]:
```print ('Add the two arrays:')
print ('\n')
```
```Add the two arrays:
[[10. 11. 12.]
[13. 14. 15.]
[16. 17. 18.]]

```
In [7]:
```print ('Subtract the two arrays:')
print (np.subtract(a,b))
print ('\n')
```
```Subtract the two arrays:
[[-10.  -9.  -8.]
[ -7.  -6.  -5.]
[ -4.  -3.  -2.]]

```
In [8]:
```print ('Multiply the two arrays:')
print (np.multiply(a,b))
print ('\n')
```
```Multiply the two arrays:
[[ 0. 10. 20.]
[30. 40. 50.]
[60. 70. 80.]]

```
In [9]:
```print ('Divide the two arrays:')
print (np.divide(a,b))
```
```Divide the two arrays:
[[0.  0.1 0.2]
[0.3 0.4 0.5]
[0.6 0.7 0.8]]
```

numpy.reciprocal()¶

This function returns the reciprocal of argument, element-wise. For elements with absolute values larger than 1, the result is always 0 because of the way in which Python handles integer division. For integer 0, an overflow warning is issued.

In [13]:
```import numpy as np
a = np.array([0.25, 1.33, 1, 33, 100])

print ('Our array is:')
print (a)
print ('\n')

print ('After applying reciprocal function:')
print (np.reciprocal(a))
print ('\n')

b = np.array([100], dtype = int)
print ('The second array is:')
print (b)
print ('\n')
```
```Our array is:
[  0.25   1.33   1.    33.   100.  ]

After applying reciprocal function:
[4.         0.7518797  1.         0.03030303 0.01      ]

The second array is:
[100]

```

numpy.power()¶

This function treats elements in the first input array as base and returns it raised to the power of the corresponding element in the second input array.

In [14]:
```import numpy as np
a = np.array([10,100,1000])

print ('Our array is:')
print (a)
print ('\n')

print ('Applying power function:')
print (np.power(a,2))
print ('\n')

print ('Second array:')
b = np.array([1,2,3])
print (b)
print ('\n')

print ('Applying power function again:')
print (np.power(a,b))
```
```Our array is:
[  10  100 1000]

Applying power function:
[    100   10000 1000000]

Second array:
[1 2 3]

Applying power function again:
[        10      10000 1000000000]
```

numpy.mod()¶

This function returns the remainder of division of the corresponding elements in the input array. The function numpy.remainder() also produces the same result.

In [15]:
```import numpy as np
a = np.array([10,20,30])
b = np.array([3,5,7])

print ('First array:')
print (a)
print ('\n')

print ('Second array:')
print (b)
print ('\n')

print ('Applying mod() function:')
print (np.mod(a,b))
print ('\n')

print ('Applying remainder() function:')
print (np.remainder(a,b))
```
```First array:
[10 20 30]

Second array:
[3 5 7]

Applying mod() function:
[1 0 2]

Applying remainder() function:
[1 0 2]
```

The following functions are used to perform operations on array with complex numbers.

• numpy.real() − returns the real part of the complex data type argument.

• numpy.imag() − returns the imaginary part of the complex data type argument.

• numpy.conj() − returns the complex conjugate, which is obtained by changing the sign of the imaginary part.

• numpy.angle() − returns the angle of the complex argument. The function has degree parameter. If true, the angle in the degree is returned, otherwise the angle is in radians.

Understand The Example Step By Step¶

In [32]:
```import numpy as np
a = np.array([-5.6j, 0.2j, 11. , 1+1j])
```
In [33]:
```print ('Our array is:')
print (a)
```
```Our array is:
[-0.-5.6j  0.+0.2j 11.+0.j   1.+1.j ]
```
In [26]:
```print ('Applying real() function:')
print (np.real(a))
```
```Applying real() function:
[-0.  0. 11.  1.]
```
In [27]:
```print ('Applying imag() function:')
print (np.imag(a))
```
```Applying imag() function:
[-5.6  0.2  0.   1. ]
```
In [28]:
```print ('Applying conj() function:')
print (np.conj(a))
```
```Applying conj() function:
[-0.+5.6j  0.-0.2j 11.-0.j   1.-1.j ]
```
In [29]:
```print ('Applying angle() function:')
print (np.angle(a))
```
```Applying angle() function:
[-1.57079633  1.57079633  0.          0.78539816]
```
In [30]:
```print ('Applying angle() function again (result in degrees)')
print (np.angle(a, deg = True))
```
```Applying angle() function again (result in degrees)
[-90.  90.   0.  45.]
```
Dolly Solanki

Support Us

Thank You for visiting our website. If you like our work, please support us so that we can keep on creating new tutorials/blogs on interesting topics (like AI, ML, Data Science, Python, Digital Marketing, SEO, etc.) that can help people learn new things faster. You can support us by clicking on the Coffee button at the bottom right corner. We would appreciate even if you can give a thumbs-up to our article in the comments section below.

Want to Share Your Views? Have Any Suggestions?

If you want to

• provide some suggestions on topic