Input arrays for performing arithmetic operations such as add(), subtract(), multiply(), and divide() must be either of the same shape or should conform to array broadcasting rules.
import numpy as np
a = np.arange(9, dtype = np.float_).reshape(3,3)
print ('First array:')
print (a)
print ('\n')
print ('Second array:')
b = np.array([10,10,10])
print (b)
print ('\n')
print ('Add the two arrays:')
print (np.add(a,b))
print ('\n')
print ('Subtract the two arrays:')
print (np.subtract(a,b))
print ('\n')
print ('Multiply the two arrays:')
print (np.multiply(a,b))
print ('\n')
print ('Divide the two arrays:')
print (np.divide(a,b))
This function returns the reciprocal of argument, element-wise. For elements with absolute values larger than 1, the result is always 0 because of the way in which Python handles integer division. For integer 0, an overflow warning is issued.
import numpy as np
a = np.array([0.25, 1.33, 1, 33, 100])
print ('Our array is:')
print (a)
print ('\n')
print ('After applying reciprocal function:')
print (np.reciprocal(a))
print ('\n')
b = np.array([100], dtype = int)
print ('The second array is:')
print (b)
print ('\n')
This function treats elements in the first input array as base and returns it raised to the power of the corresponding element in the second input array.
import numpy as np
a = np.array([10,100,1000])
print ('Our array is:')
print (a)
print ('\n')
print ('Applying power function:')
print (np.power(a,2))
print ('\n')
print ('Second array:')
b = np.array([1,2,3])
print (b)
print ('\n')
print ('Applying power function again:')
print (np.power(a,b))
This function returns the remainder of division of the corresponding elements in the input array. The function numpy.remainder() also produces the same result.
import numpy as np
a = np.array([10,20,30])
b = np.array([3,5,7])
print ('First array:')
print (a)
print ('\n')
print ('Second array:')
print (b)
print ('\n')
print ('Applying mod() function:')
print (np.mod(a,b))
print ('\n')
print ('Applying remainder() function:')
print (np.remainder(a,b))
The following functions are used to perform operations on array with complex numbers.
numpy.real() − returns the real part of the complex data type argument.
numpy.imag() − returns the imaginary part of the complex data type argument.
numpy.conj() − returns the complex conjugate, which is obtained by changing the sign of the imaginary part.
numpy.angle() − returns the angle of the complex argument. The function has degree parameter. If true, the angle in the degree is returned, otherwise the angle is in radians.
import numpy as np
a = np.array([-5.6j, 0.2j, 11. , 1+1j])
print ('Our array is:')
print (a)
print ('Applying real() function:')
print (np.real(a))
print ('Applying imag() function:')
print (np.imag(a))
print ('Applying conj() function:')
print (np.conj(a))
print ('Applying angle() function:')
print (np.angle(a))
print ('Applying angle() function again (result in degrees)')
print (np.angle(a, deg = True))
If you are more comfortable learning through video tutorials then we would recommend that you subscribe to our YouTube channel.
When going through coding examples, it's quite common to have doubts and errors.
If you have doubts about some code examples or are stuck somewhere when trying our code, send us an email at coderzcolumn07@gmail.com. We'll help you or point you in the direction where you can find a solution to your problem.
You can even send us a mail if you are trying something new and need guidance regarding coding. We'll try to respond as soon as possible.
If you want to